
Journal of Computational Physics 225 (2007) 891–909

www.elsevier.com/locate/jcp
Incorporating topological derivatives into shape
derivatives based level set methods

Lin He a, Chiu-Yen Kao b,*, Stanley Osher a

a UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, USA
b Institute for Mathematics and its Applications, 400 Lind Hall, 207 Church Street, Minneapolis, MN 55455, USA

Received 10 August 2006; received in revised form 4 January 2007; accepted 6 January 2007
Available online 16 January 2007
Abstract

Shape derivatives and topological derivatives have been incorporated into level set methods to investigate shape opti-
mization problems. The shape derivative measures the sensitivity of boundary perturbations while the topological deriv-
ative measures the sensitivity of creating a small hole in the interior domain. The combination of these two derivatives
yields an efficient algorithm which has more flexibility in shape changing and may escape from a local optimal. Examples
on finding the optimal shapes for maximal band gaps in photonic crystal and acoustic drum problems are demonstrated.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Shape optimization arises in many different fields, such as mechanical design and shape reconstruction. It
can be generally described as a problem of finding the optimal shapes in a certain sense with certain con-
straints. One of the well-known problems is to find the shape of a bubble which minimize the surface tension
or surface area with a fixed volume. The answer is a sphere. Nowadays shape optimization problems with
P.D.E. constraints are under extensive study.

One of the difficulties in shape optimization problems is that the topology of the optimal shape is unknown.
Developing numerical techniques which can handle topology changes becomes essential for shape optimiza-
tion problems. The level set method introduced in [19] has been well known for handling topology changes,
such as breaking one component into two, merging two components into one and forming sharp corners.
Therefore, it has been used naturally to study shape optimization problems. Instead of using the physically
driven velocity, the level set method typically moves the surfaces by the gradient flow of an energy functional.
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Previously, this gradient flow was computed based on shape derivatives. These approaches based on shape
sensitivity include the boundary design of elastic structures in [20], the shape design for drums having certain
properties on frequencies in [18] and the shape design for photonic crystals having maximum band gaps in
[14].

However, as pointed out in [2,3], the level set approach based on the shape sensitivity may get stuck at
shapes with fewer holes than the optimal geometry in some applications to structure designs. Several works
[1,6,7,27] have addressed this issue by a modified level set method that includes the topological derivative. This
derivative measures the influence of creating a small hole in the interior domain. Particularly, we follow the
work done by Burger et al. [7], where they have applied this new approach to a rather simple example: the
minimization of a least squares functional. Thus the main purpose of our paper is to generalize their approach
to any objective functional by assuming some continuity conditions of the objective functional.

The remainder of the paper is organized as follows: In Sections 2 and 3, the shape derivative and the topo-
logical derivative are introduced, respectively. In Section 4, the level set method is studied to evolve the shape
based on shape derivative and/or topological derivative. In Section 5, we show the numerical results for the
shape design of drums and photonic crystals. We conclude with an appendix.

2. Shape derivatives

Shape derivatives measure the sensitivity of boundary perturbations. In the framework of Murat–Simon
[15,23], it is defined as the following. Let X 2 D � RN be a reference domain. Consider the perturbation under
the map h 2 W 1;1ðRN ;RN Þ s.t. khkW 1;1 < 1:
Xh ¼ ðI þ hÞX;

where I is the identity map. The set Xh is defined as
Xh ¼ fxþ hðxÞjx 2 Xg:

The shape derivative of an objective shape functional, F : RN ! R, at X is defined as the Frechet differential of
h!FðXhÞ at 0. h can be viewed as a vector field advecting the reference domain X. The shape derivative
dSFðXÞðhÞ depends only on h � n on the boundary oX because the shape of X does not change at all if h is
lying on the tangential direction of the domain X.

For an objective functional that is the integral on the volume of X or along the boundary of X, the follow-
ing formula can be easily obtained. If X is a smooth bounded open set, f ðxÞ 2 W 1;1ðRN Þ, and
FðXÞ ¼
Z

X
f ðxÞ dx;
the shape derivative is
dSFðXÞðhÞ ¼
Z

X
r � ðhðxÞf ðxÞÞ ¼

Z
oX

hðxÞ � nðxÞf ðxÞ ds: ð1Þ
If X is a smooth bounded open set, f ðxÞ 2 W 2;1ðRN Þ, and
FðXÞ ¼
Z

oX
f ðxÞ dx;
the shape derivative is
dSFðXÞðhÞ ¼
Z

oX
hðxÞ � nðxÞ of

on
þ Hf

� �
ds; ð2Þ
where H is the mean curvature of oX defined by H ¼ r � n. These two formulas indicate that the shape deriv-
ative depends only on the boundary when the objective functional is a volume integral and the curvature plays
a role when the objective functional is a surface integral.

After the shape derivative is computed, the gradient flow can be chosen to optimize the objective functional.
Suppose the shape derivative is
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dSFðXÞðhÞ ¼
Z

oX
hðxÞ � nðxÞW ðXÞðxÞ ds; ð3Þ
to maximize the objective functional FðXÞ, we choose the gradient flow as
hðxÞ ¼ W ðXÞðxÞnðxÞ:

This means that the normal velocity of the shape is W ðXÞðxÞ: When we use the zero level set of function / to
represent the boundary of X, the motion under the normal velocity W ðXÞðxÞ is simply [17–19]
/t þ W ðXÞðxÞjr/j ¼ 0: ð4Þ

Notice that the shape derivative in (3) is only defined on the boundary oX, however under the level set frame-
work it has to be defined on the whole domain D. In the case that the shape derivative functional is originally
defined on D, for example, the shape derivative from (1) and (2), we can just naturally extend it to D (cf. [18]).
There are alternative means to extend the normal velocity W ðXÞðxÞ on the zero level set to D, such as the meth-
od outlined in [9,28]. Here we only consider the first case.

3. Topological derivatives

While the shape derivative is defined on local perturbations of the boundary of the domain X, the topolog-
ical derivative measures the influence of creating small holes at a certain point. The idea of the topological
derivative is to create a small ball Bq;x with center x and radius q inside/outside the domain X and then con-
sider the variation of the objective functional F with respect to the volume of this small ball. For x 2 X, the
topological derivative dTFðXÞðxÞ is defined as the limit (if it exists)
dTFðXÞðxÞ :¼ lim
q!0

FðXq;xÞ �FðXÞ
jBq;x

T
Xj ; ð5Þ
where Xq;x ¼ X� Bðq; xÞ. This definition is to subtract material at x 2 X. However, in some situations, it is
reasonable to add material at x 2 D� X. In that case, the ‘‘set-minus’’ must be replaced by ‘‘union’’ in
Eq. (5). For the sake of simplicity, we will only deal with the ‘‘set-minus’’ case and draw conclusions on
the ‘‘union’’ case by analogy.

There does exist objective functionals which are not topological differentiable. For example,
dTjoXj ¼ lim
q!0

joBq;xj
jBq;xj

’ lim
q!0

qN�1

qN
¼ 1: ð6Þ
When the topological derivative does exist, by Taylor expansion we naturally have F ðXq;xÞ ¼ F ðXÞþ
CNqN dTFðXÞðxÞ þ oðqN Þ (cf. [22]), where CN is a constant, related with the volume of the N dimensional ball.
In this paper, we focus on the case where N ¼ 2 and furthermore we assume that F ðXq;xÞ 2 C2ðR;RÞ with re-
spect to q for small q.

The topological derivative is defined on the situation where a small hole is created at some certain point.
However from the analytical point of view, we think the change of the topology happens continuously. Thus
we can relate it with the shape change. Specifically, for x 2 X, assuming a hole with radius d is created already,
we consider the shape change from Xd;x to Xq;x, where 0 < d < q. And if we let d! 0, then this is exactly the
definition of the topological derivative.

The shape change from Xd;x to Xq;x corresponds to the velocity h ¼ �n and dt ¼ q� d. Based on the central
difference scheme for any C2ðR;RÞ functional EðqÞ:
EðqÞ � EðdÞ ¼ ðq� dÞE0 qþ d
2

� �
þOððq� dÞ3Þ;
and applying the shape derivative given by (3), the topological derivative is computed as the following:
lim
q!0

FðXq;xÞ �FðXÞ
jBq;x \ Xj ¼ lim

q!0
lim
d!0

FðXq;xÞ �FðXd;xÞ
jBq;x \ ðX� Bd;xÞj

ð7Þ
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¼ lim
q!0

lim
d!0

ðq� dÞ
R

oBdþq
2
;x

�W Xdþq
2 ;x

� �
ðyÞn � n dsþOððq� dÞ3Þ

pq2 � pd2

¼ lim
q!0

lim
d!0

R
oBdþq

2
;x

�W Xdþq
2 ;x

� �
ðyÞ ds

pðdþ qÞ þ lim
q!0

lim
d!0

Oððq� dÞ2Þ
qþ d

¼ lim
q!0

R
oBq;x

W ðXq;xÞðxÞ � W ðXq;xÞðyÞ ds

2pq
� lim

q!0

R
oBq;x

W ðXq;xÞðxÞ ds

2pq
ð8Þ

¼ � lim
q!0

W ðXq;xÞðxÞ

¼ �W ðXÞðxÞ:
The second to last equivalence requires the Lipschitz continuity of W ðXq;xÞðyÞ with respect to y. And the last
equivalence requires the continuity of W ðXq;xðxÞÞ with respect to q at q ¼ 0. As we mentioned before, it is by
natural extension that W ðXÞðyÞ is defined on the interior point x 2 X. In practice, we have to verify these two
requirements before we carry on any further actions. Due to the similarity of our both numerical examples, we
will only verify the requirements for the photonic crystal case, see Section 5.1.

By similar deduction for the ‘‘union’’ case, we obtain the topological derivative of the objective functional
F based on a domain X
dTFðXÞðxÞ ¼
�W ðXÞðxÞ when x 2 X;

W ðXÞðxÞ when x 2 D� X:

(
ð9Þ
We mark that it might not be easy to compute the shape derivative of the objective functional FðXÞ. However,
the purpose of this paper is to incorporate the topological derivative into the standard level set method, which
is based on that the information of the shape derivative is known already. For explicit computations of topo-
logical derivatives in shape optimization, etc., we refer to [1,5,11,13,16,22,27].

We also want to draw attention to the use of the central difference scheme. It is important for our proof to
focus on a two-dimensional case. Unfortunately, a similar proof cannot be obtained for the case where N > 2.
Other means have to be sought.

4. Incorporating shape and topological derivatives into the level set method

In some applications to structural design it is observed that the shape derivative based level set method
could be trapped in a local optimum with fewer holes than the ‘‘real’’ optimal geometry. Therefore, it is nec-
essary to find some additional forces to generate holes. Here we will try to add a term dependent on the topo-
logical derivative to the level set equation. Based on the standard level set equation (4), the new equation is
formulated as
/t þ W jr/j þ xG ¼ 0; ð10Þ

where X is a positive parameter which balances the influence of the additional force term G.

In order to maximize the objective functional F, we do the following reasoning to choose the source term
G:

� If /ðx; tÞ < 0 and dTFðXÞðx; tÞ > 0, then it is favorable to generate a hole at x which means the value of /
should increase.
� If /ðx; tÞ < 0 and dTFðXÞðx; tÞ < 0, then the value of / should not increase since it is not favorable to gen-

erate holes.
� If /ðx; tÞ > 0 and dTFðXÞðx; tÞ < 0, then it is not favorable to add material and thus the value of /ðx; tÞ

should not decrease.
� If /ðx; tÞ > 0 and dTFðXÞðx; tÞ > 0, then it is favorable to add material which means the value of / should

decrease.
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To simplify the study of the movement of the level set towards zero, we assume that this movement is under
the influence of the topological derivative only. Then
/t ¼ �xG: ð11Þ

The term W jr/j is ignored for the moment. Thus the choice of G will have to satisfy
Gðx; tÞ
< 0 if /ðx; tÞdTFðXÞðx; tÞ < 0;

> 0 if /ðx; tÞdTFðXÞðx; tÞ > 0:

�
ð12Þ
Following [7], we also choose to use Gðx; tÞ ¼ signð/ðx; tÞÞdTFðXÞðx; tÞ. The scale of G is dependent on the
topological derivative dTFðXÞ only. But the sign of G is dependent on not only dTFðXÞ but also signð/Þ,
which is decided by the location of the point x relative to the zero level set of /. From the deducted expression
of the topological derivative (9), we obtain G ¼ W . Thus Eq. (10) becomes
/t ¼ �W ðjr/j þ xÞ: ð13Þ
The sign of the velocity W decides the movement of / towards or away from the zero level set. Also the speed
of this movement is determined by the magnitude of the gradient of / and the extra constant X. As we can see,
when the zero level set is flat or the point is far away from the boundary, the force induced by this magnitude
term jr/j would be very small. This is when the force generated by X makes the main contribution to help the
movement not get stuck in a local optimum and to expedite the maximization of the cost functional, to finally
reach an optimal shape X0 which /ðx; tÞW ðX0Þðx; tÞ 6 0 for any x 2 D (For detailed explanation, see Appendix
A or [7]).

In our numerical experiments, we have tried a variation of (13) which has the form
/t ¼ �W : ð14Þ
This equation is related to the work [12] done by Gibou and Fedkiw on segmentation problems. The main part
of their idea can be simplified as follows: suppose the level set equation is given by /t ¼ �W , they update / by
the sign of W:
/ ¼
�1 if W > 0;

1 if W 6 0:

�
ð15Þ
However, we choose a different algorithm to update /, see Appendix B. Moreover, we can interpret Eq. (14) as
the propagation of / is driven only by the force of topology changes.

We note that if we reinitialize [21,25] the level set function after every iteration, we obtain jr/ðxÞj ¼ 1,
which results Eqs. (4), (13) and (14) are equivalent to each other. Thus incorporating the topological derivative
into the level set method can also be treated as the reinitialization process after every iteration, which could be
quite expensive if the level set function is far away from the signed distance function. However, the equivalent
relationship between incorporating the topological derivative into the level set method and the reinitialization
is only true if we extend the normal velocity on the zero level set to the whole domain naturally by the velocity
functional W ðXÞðxÞ. If we extend the velocity of the zero level set differently, for example, a constant extension
along the normal direction, then adding the reinitialization step when solving (4) can possibly generate wrong
holes.

5. Numerical results

To demonstrate the improvements obtained by incorporating the topological derivative in addition to the
shape derivative into the standard level set method, we performed numerical experiments on two models. One
is to maximize the band gap of photonic crystals (cf. [14]) which involves solving a simplified Maxwell’s equa-
tion. The other is to maximize the spectral gap of an inhomogeneous drum with two different densities (cf.
[18]) by solving an eigenvalue problem subject to the mass constraint. The extensive numerical work provides
compelling evidence that incorporating the topological derivative into the standard level set method is a pow-
erful approach to optimal design.
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5.1. The photonic crystal problem

Photonic crystals are periodic structures composed of dielectric material and designed to exhibit band gaps,
i.e., range of frequencies in which electromagnetic waves cannot propagate. In [10,14] and etc., the problem of
designing structures with maximal band gaps is considered under the assumption that the structure is com-
posed of ‘‘mixtures’’ of two given dielectric materials. In [10], a existence proof of the solution for a square
array of dielectric columns is presented and a generalized gradient ascent algorithm is applied to solve this
problem. And in [14], the result by using the level set method (cf. [19]) has shown great improvements in
the value of the gaps and the convergence speed.

To focus on the study of maximizing band gaps in photonic crystals, the following conditions are assumed
(cf. [10,14]): the medium is isotropic, the magnetic permeability is constant, and the dielectric function �ðxÞ is
periodic. Applying the Bloch theorem, the simplified Maxwell’s equations on the transverse magnetic (TM)
field and the transverse electric (TE) field will become:
0
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band g
� 1
�ðxÞ ðr þ iaÞ � ðr þ iaÞEa ¼
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�ðxÞ ðr þ iaÞH a ¼
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c2 H a;

8<
: ð16Þ
where a is a wave number in the irreducible Brillouin zone and the density function
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Top: the initial cross-sectional view of the dielectric distribution; Bottom left: the initial band gap structure; Bottom right: the final
ap structure for maximizing the band gap between x3
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TM.
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�ðxÞ ¼
�1 for x 62 X;

�2 for x 2 X:

�

Since we only consider the square lattice, the irreducible Brillouin zone is the triangular wedge in the upper-
right corner of the first Brillouin zone K ¼ ½�p; p�2, which is inset in both bottom figures in Fig. 1. The three
special points C, X, and M correspond, respectively, to a ¼ ð0; 0Þ, a ¼ ðp; 0Þ, and a ¼ ðp; pÞ.

We solve the following optimization problems:

1. Maximize the band gap in TM : FTMðXÞ :¼ sup�ðxÞðinfaxnþ1
TM � supax

n
TMÞ,

2. Maximize the band gap in TE : FTEðXÞ :¼ sup�ðxÞðinfaxmþ1
TE � supax

m
TEÞ.

Here we only maximize the band gap in TM case. The shape derivative of FTM (cf. [14]) is
dSFðXÞðhÞ ¼
Z

oX
V TMh � n ds;
where
V TM ¼ co � 1

2
ð�2 � �1Þxnþ1

TM juj
2

: u 2 � nþ1
TM ð�; aÞ

� �
� co � 1

2
ð�2 � �1Þxn

TMjuj
2

: u 2 � n
TMð�; aÞ

� �
; ð17Þ
where � n
TM is the span of all eigenfunctions u associated with the eigenvalues xn

TM and satisfying the normal-
ization

R
D �u

2 ¼ 1.
Based on the work [4] by Ammari and Nedelec, we know that the eigenvalue xn

TMðXq;xÞ is twice differentia-
ble for small q, so does the corresponding eigenvector uðXq;xÞðyÞ. Combining the fact that uðXq;xÞðyÞ belongs to
C1ðDÞ, which of course implies Lipschitz continuous, we obtain that the topological derivative equals
�V TMðxÞ.

The level set method (cf. [19]) is applied in [14] to represent the interface between two materials with dif-
ferent dielectric constants, i.e.,
Comparison results of the dielectric distribution between different choices of X for maximizing the band gap between x3
TM and



5 10 15 20 25

0.05

0.1

0.15

ω = 0.0, Gap = 0.1890

5 10 15 20 25

0.05

0.1

0.15

0.2
ω = 1.0, Gap = 0.2006

2 4 6 8 10 12

0.05

0.1

0.15

0.2
ω = 5.0, Gap = 0.2013

2 4 6 8 10

0.05

0.1

0.15

0.2

ω = 10.0, Gap = 0.2044
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Fig. 4. The evolution of the dielectric distribution by solving /t þW ðjr/j þ 100Þ ¼ 0 for maximizing the band gap between x8
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�ðxÞ ¼
�1 for fx : /ðxÞ < 0g;
�2 for fx : /ðxÞ > 0g:

�
ð18Þ
We update the level set function by solving the standard level set Eq. (4), where the velocity W gives the ascent
direction to optimize the desired design (cf. [14]). To incorporate the topological derivative, we just need to
add a constant X as in (13). After / is updated, new distribution of density and the gradient ascent direction
can be computed. This procedure is repeated until the static state is reached. The same procedure is also done
for the acoustic drum problem in Section 5.2 No reinitialization step is taken for both problems.

In our numerical simulations, we consider a photonic crystal with a square lattice D ¼ ½�0:5; 0:5��
½�0:5; 0:5� and we use 64� 64 mesh grids. For the reason of clarity, a 3� 3 array of unit lattice is shown,
see the top of Fig. 1. This figure is the initial dielectric function �ðxÞ, which is used to maximize the band
gap between the third and the fourth eigenvalues in TM. The light color indicates the low dielectric constant
�2 ¼ 1 while the dark color indicates the high dielectric constant �1 ¼ 11:4. The width of crosses is 0.2. The
bottom left figure shows the corresponding band structure for the wave vector a along the boundary of the
irreducible Brillouin zone of reciprocal lattice. Compared with the initial band structure, the right side band
gap structure for the optimal shape has a quite large space between the third and the fourth eigenvalues.

Furthermore, for the above case of maximizing the band gap between x3
TM and x4

TM, results by solving Eq.
(13) are shown in Figs. 2 and 3. We present the comparison results of four different choices of the topological
derivative parameter X, which varies from 0 to 10. In Fig. 2, all of them give almost the same optimal shape.
ig. 5. The evolution of the dielectric distribution by solving /t ¼ �W for maximizing the band gap between x8
TM and x9

TM.
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However, it only takes 11 steps to reach the optimal shape when x ¼ 10 (see Fig. 3, bottom right), while it
takes 28 steps for the standard level set method, i.e. x ¼ 0 (see Fig. 3, top left). Moreover, for the case of
x ¼ 10, it is at the 4th step that the gap exceeds over 0.15, while it is not until the 20th step for the case of
x ¼ 0. This fact indicates that the topological derivative takes the main role at the beginning. During the four
experiments, the time step dt is always set to satisfy the CFL condition:
Fig. 6
15:461
dt
dx
jW j1 ¼ 0:5 < 1:0:
Figs. 4 and 5 show the evolution of dielectric distribution of optimizing the band gap for the eighth and ninth
eigenvalues in TM. A series of pictures are presented in each figure to demonstrate how topology changes
along the iteration.
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. The evolution of the density distribution for maxXk2 � k1 from solving /t þW jr/j ¼ 0. After 450 iterations, maxXk2 � k1 ¼
8.
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In Fig. 4, Eq. (13) is solved with x ¼ 100. The topology changes drastically from the initial shape with
infax9

TM � supax
8
TM ¼ �0:1040 to the result from the third iteration with gap = 0.2012, see top three pictures

in Fig. 4. We notice that since the third iteration the topology has not changed at all even though the band gap
has doubled itself from 0.2012 to 0.4217 at the 25th iteration. We believe that the use of the topological deriv-
ative is critical here. Because ‘‘optimal’’ shapes obtained by using same initial shape but with x ¼ 0 or x ¼ 10
are observed to be stuck at a local optimum, where the band gap of both cases are negative.

This belief has been verified again in Fig. 5, where the level set function is updated via Eq. (14). Thus the
propagation of the interface is driven by the force of changing topology only. Again, the change of the topol-
ogy happens rapidly at the first five iterations and then the topology stays the same while the shape evolves
itself to the optimal shape with gap = 0.4323. It shows that topological derivatives are capable of what shape
derivatives can do.
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Fig. 7. The evolution of the density distribution for maxXk2 � k1 from solving /t þ W ðjr/j þ 10Þ ¼ 0. After 180 iterations,
maxXk2 � k1 ¼ 15:4724.
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The experiment of updating the level set function via Eq. (14) has been tested on different initial shapes with
maximizing the band gap for different adjacent eigenvalues. The result of (14) is compared with the result of
(13) with large enough X and with x ¼ 0. The initial shapes are the same. Similar behaviors of the solutions of
(14) and (13) with large enough X are observed. One of course, is rapid topology changes at early iterations. In
addition, compared with the standard level set method, both have more tendency to surpass a local minimum
and both are less dependent on the initial shape. However, there are some issues regarding to the choice of the
time step to solve this ODE problem (14). For details, please read Appendix B.

5.2. The acoustic drum problem

The resonant frequencies of a drum satisfy the eigenvalue problem (cf. [18])
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Fig. 8. The evolution of the density distribution for maxXk3 � k2 from solving /t þW jr/j ¼ 0. After 600 iterations,
maxXk3 � k2 ¼ 20:1239.
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�DuðxÞ ¼ k�ðxÞuðxÞ x 2 D;

u ¼ 0 x 2 oD:

�

Let X �� D be a domain inside D. Suppose that the density �ðxÞ only takes two values
�ðxÞ ¼
�1 for x 62 X;

�2 for x 2 X;

�

and the mass is a constant which implies
Z
X

dx ¼ c;
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. The evolution of the density distribution for maxXk3 � k2 from solving /t þ W ðjr/j þ 10Þ ¼ 0. After 150 iterations,

3 � k2 ¼ 20:1600.
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where c is a constant. By using the Lagrange multiplier method, maximal band gaps between kkþ1 and kk can
be found by maximizing the following objective functional
Fig. 1
maxXk
FðXÞ ¼ kkþ1ðXÞ � kkðXÞ þ m
Z

X
dx� c

� �
;

where m is the Lagrange multiplier. The shape derivative of F is
dSFðXÞðhÞ ¼
Z

oX
ðvþ mÞh � n ds;
where
vðxÞ ¼ kkþ1ð�2 � �1Þu2
kþ1ðxÞ � kkð�2 � �1Þu2

kðxÞ: ð19Þ
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0. The evolution of the density distribution for maxXk4 � k3 from solving /t þW jr/j ¼ 0. After 600 iterations,

4 � k3 ¼ 15:2323.
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and
Fig. 1
maxXk
m ¼ �
R

Dr � vn dxR
Dr � n dx

ð20Þ
is obtained based on the projection approach from the mass constraint. The eigenfunction uðxÞ satisfies the
normalization

R
D �u

2ðxÞ dx ¼ 1. We start from an initial guess for /:
� ¼
�1 for x 62 Xfx : /ðxÞ < 0g;
�2 for x 2 Xfx : /ðxÞ > 0g;
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1. The evolution of the density distribution for maxXk4 � k3 from solving /t þ W ðjr/j þ 10Þ ¼ 0. After 300 iterations,

4 � k3 ¼ 16:3642.
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Fig. 12. The evolution of the density distribution for maxXk5 � k4 from solving /t þW jr/j ¼ 0. After 1200 iterations,
maxXk5 � k4 ¼ 21:5935.
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compute the gradient ascent direction W ¼ vþ m and evolve / by the standard level set Eq. (4) for one time
step. For the approach based on the combination of shape derivative and topological derivative, Eq. (13) is
solved with x ¼ 10.

We show the numerical results based on purely shape derivatives and the combination of shape deriva-
tives and topological derivatives for spectral gap from k2 � k1 to k5 � k4. We can clearly see that the algo-
rithms based on two different approaches yield different evolutions. In general, the second approach which is
based on combination of shape derivatives and topological derivatives is more flexible on shape changing
because it can easily generate new holes. For optimizing k2 � k1, the evolutions are pretty much the same
for both approaches, see Figs. 6 and 7. However, the second approach reaches static state much faster than
the first approach. It takes less than 50 iterations. For optimizing k3 � k2, the second approach easily creates
new holes and also reaches static state faster, see Figs. 8 and 9. For optimizing k4 � k3, the first approach
gets stuck in a local maximum k4 � k3 ¼ 15:2323 while the second approach obtains a different optimal
shape which has a larger gap k4 � k3 ¼ 16:3642, see Figs. 10 and 11. For optimizing k5 � k4, it is again
the example that both approaches reach same static state but the second approach offers a faster way, see
Figs. 12 and 13.
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Fig. 13. The evolution of the density distribution for maxXk5 � k4 from solving /t þ W ðjr/j þ 10Þ ¼ 0. After 450 iterations,
maxXk5 � k4 ¼ 21:4818.
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Appendix A

Suppose X0 is the optimal shape given. If there is a point x 2 D such that /ðx; tÞW ðx; tÞ > 0, then either both
of /ðx; tÞ and W ðx; tÞ are positive or negative. If both are positive, which means the point x 2 D� X0 and the
topological derivative dTFðX0Þðx; tÞ ¼ W ðx; tÞ > 0, then we should add material at x; if both are negative,
that means the point x 2 X0 and dTFðX0Þðx; tÞ ¼ �W ðx; tÞ > 0, then we should create holes at the point x.
In either case, the topology has to be changed. That of course, shows X0 is not an optimal shape.
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In our experimental results of optimal shape, we observe some points which satisfy the same conclusion
cannot be drawn if we follow the same line of this paper /ðx; tÞW ðx; tÞ > 0. See points inside the white area
but outside the circle in Fig. 14. They satisfy /ðx; tÞ < 0 and W ðx; tÞ < 0. We consider this area as the diffusion
area because the values of W at these points in the area are small.

Appendix B

To solve (14), first we denote T n
i;j ¼ maxð/

n
i;j

W n
i;j
; 0Þ, M ¼ maxi;jfT n

i;jg and m ¼ mini;jfT n
i;jg. Then we let dt ¼ M

and take the following steps to update the level set function from /n to /nþ1:

1. While dt P m, we compute /nþ1 through /nþ1 ¼ /n � dt � W n; otherwise we stop here which is considered
as our optimal shape.

2. Compute the new band gap of dielectric distribution � determined by /nþ1. When the new gap is smaller
than the old gap, let dt ¼ dt

2
, go back to step 1.

We state that the purpose of choosing dt = M is to impose an ‘‘optimal shape’’ according to W. However,
sometimes the monotonicity of the band gap requires a smaller time step when the band gap is not increasing.
This idea of using an energy function as the criterion is related with the work of Song and Chan in [24]. Unfor-
tunately, the above algorithm often needs to go back to step 1 for several times before obtaining a larger new
gap. It is very time consuming considering the large computation of eigs() function in Matlab. Similar situa-
tions are encountered in a recent paper by Amstutz and Andrae [6], a different approach is proposed to solve
(14) due to the fact that W is not bound to vanish at an optimum. Again, their time step is chosen according to
the previous iteration and possibly decreased until the energy functional decreases. Their approach is taken by
projecting W onto the orthogonal complement of /, i.e.
/t ¼ �W þ ðW ;/Þ
k/k2

/:
Thus the level set function is constrained to a sphere of radius k/0k and when / tends to a local maximum
W ¼ s/ is obtained, where s is a positive constant. This certainly agrees with Appendix A. For details, see
[6]. However in some other applications of the topological derivative, particularly, the active contour model
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by Chan and Vese [8,26], we can avoid solving the ODE (14) by considering directly the variation of the energy
functional when we move a pixel from inside the zero level set to outside the zero level set or vice versa. This
will be reported in a sequential paper.
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